Wiggle Subsequence
Problem Statement
A wiggle sequence is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with one element and a sequence with two non-equal elements are trivially wiggle sequences.
- For example,
[1, 7, 4, 9, 2, 5]
is a wiggle sequence because the differences(6, -3, 5, -7, 3)
alternate between positive and negative. - In contrast,
[1, 4, 7, 2, 5]
and[1, 7, 4, 5, 5]
are not wiggle sequences. The first is not because its first two differences are positive, and the second is not because its last difference is zero.
A subsequence is obtained by deleting some elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.
Given an integer array nums
, return the length of the longest wiggle subsequence of nums.
Example 1:
Input: nums = [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence with differences (6, -3, 5, -7, 3).
Example 2:
Input: nums = [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length.
One is [1, 17, 10, 13, 10, 16, 8] with differences (16, -7, 3, -3, 6, -8).
Example 3:
Input: nums = [1,2,3,4,5,6,7,8,9]
Output: 2
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
Code
Python Code
class Solution:
def wiggleMaxLength(self, nums: List[int]) -> int:
f = 1
d = 1
for i in range(1, len(nums)):
if nums[i]>nums[i-1]:
f = d+1
elif nums[i] < nums[i-1]:
d = f+1
res = max(f, d)
return res