Skip to main content

Minimum Number of K Consecutive Bit Flips

Problem Statement

You are given a binary array nums and an integer k.

A k-bit flip is choosing a subarray of length k from nums and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.

Return the minimum number of k-bit flips required so that there is no 0 in the array. If it is not possible, return -1.

A subarray is a contiguous part of an array.

Leetcode link

Example 1:

Input: nums = [0,1,0], k = 1
Output: 2
Explanation: Flip nums[0], then flip nums[2].

Example 2:

Input: nums = [1,1,0], k = 2
Output: -1
Explanation: No matter how we flip subarrays of size 2, we cannot make the array become [1,1,1].

Example 3:

Input: nums = [0,0,0,1,0,1,1,0], k = 3
Output: 3
Explanation:
Flip nums[0],nums[1],nums[2]: nums becomes [1,1,1,1,0,1,1,0]
Flip nums[4],nums[5],nums[6]: nums becomes [1,1,1,1,1,0,0,0]
Flip nums[5],nums[6],nums[7]: nums becomes [1,1,1,1,1,1,1,1]

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= k <= nums.length

Code

Python Code
class Solution:
def minKBitFlips(self, A, K):
res = 0
s = []
for i in range(len(A)):
index = bisect.bisect_right(s, i)
# if influenced, flip it and then judge
if (len(s) - index) % 2 == 1:
A[i] = 1 - A[i]
# only consider it when A[i] == 0
if A[i] == 1: continue
if len(A)-i < K: return -1
res += 1
s.append(i + K)
return res