Search in Rotated Sorted Array II
Problem Statement
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
Constraints:
1 <= nums.length <= 5000
-10
4<= nums[i] <= 10
4nums
is guaranteed to be rotated at some pivot.-10
4<= target <= 10
4
Code
Python
class Solution:
def search(self, nums, target):
l, r = 0, len(nums)-1
while l <= r:
mid = l + (r-l)//2
if nums[mid] == target:
return True
while l < mid and nums[l] == nums[mid]: # tricky part
l += 1
# the first half is ordered
if nums[l] <= nums[mid]:
# target is in the first half
if nums[l] <= target < nums[mid]:
r = mid - 1
else:
l = mid + 1
# the second half is ordered
else:
# target is in the second half
if nums[mid] < target <= nums[r]:
l = mid + 1
else:
r = mid - 1
return False