LRU Cache
Problem Statement
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity)Initialize the LRU cache with positive sizecapacity.int get(int key)Return the value of thekeyif the key exists, otherwise return-1.void put(int key, int value)Update the value of thekeyif thekeyexists. Otherwise, add thekey-valuepair to the cache. If the number of keys exceeds thecapacityfrom this operation, evict the least recently used key. The functionsgetandputmust each run inO(1)average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
- 1 <= capacity <= 3000
- 0 <= key <= 104
- 0 <= value <= 105
- At most 2 * 105 calls will be made to
getandput.
Code
Python
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.values = OrderedDict()
def get(self, key: int) -> int:
if key not in self.values:
return -1
else:
self.values[key] = self.values.pop(key)
return self.values[key]
def put(self, key: int, value: int) -> None:
if key not in self.values:
if len(self.values) == self.capacity:
self.values.popitem(last=False)
else:
self.values.pop(key)
self.values[key] = value