Combination Sum IV
Problem Statement
Given an array of distinct integers nums
and a target
integer target
, return the number of possible combinations that add up to target
.
The test cases are generated so that the answer can fit in a 32-bit integer.
Example 1:
Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Example 2:
Input: nums = [9], target = 3
Output: 0
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
- All the elements of
nums
are unique. 1 <= target <= 1000
Code
Python Code
class Solution(object):
def combinationSum4(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
def recCount(startIdx, nums, target, mem):
if target == 0:
return 1
if target < 0:
return 0
if (startIdx, target) in mem:
return mem[(startIdx, target)]
mem[(startIdx, target)] = 0
for i in range(startIdx, startIdx + len(nums)):
# circle the nums array starting from the given startIdx
# not exclude the current num pointed by the startIdx for the next recursion
mem[(startIdx, target)] += recCount(i % len(nums), nums, target - nums[i % len(nums)], mem)
return mem[(startIdx, target)]
# memorize each pair of starting Idx and target
mem = {}
return recCount(0, nums, target, mem)