LFU Cache
Problem Statement
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache class:
LFUCache(int capacity)Initializes the object with thecapacityof the data structure.int get(int key)Gets the value of thekeyif thekeyexists in the cache. Otherwise, returns-1.void put(int key, int value)Update the value of thekeyif present, or inserts thekeyif not already present. When the cache reaches itscapacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkeywould be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[4,3], cnt(4)=2, cnt(3)=3
Constaints:
- 0 <= capacity <= 104
- 0 <= key <= 105
- 0 <= value <= 109
- At most 2 * 105 calls will be made to
getandput.
Code
Python
from collections import defaultdict
from collections import OrderedDict
class Node:
def __init__(self, key, val, count):
self.key = key
self.val = val
self.count = count
class LFUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cap = capacity
self.key2node = {}
self.count2node = defaultdict(OrderedDict)
self.minCount = None
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self.key2node:
return -1
node = self.key2node[key]
del self.count2node[node.count][key]
# clean memory
if not self.count2node[node.count]:
del self.count2node[node.count]
node.count += 1
self.count2node[node.count][key] = node
# NOTICE check minCount!!!
if not self.count2node[self.minCount]:
self.minCount += 1
return node.val
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
if not self.cap:
return
if key in self.key2node:
self.key2node[key].val = value
self.get(key) # NOTICE, put makes count+1 too
return
if len(self.key2node) == self.cap:
# popitem(last=False) is FIFO, like queue
# it return key and value!!!
k, n = self.count2node[self.minCount].popitem(last=False)
del self.key2node[k]
self.count2node[1][key] = self.key2node[key] = Node(key, value, 1)
self.minCount = 1
return