Implement Queue using Stacks
Problem Statement
Implement a first in first out (FIFO
) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push,
peek,
pop, and
empty`).
Implement the MyQueue
class:
void push(int x)
Pushes elementx
to the back of the queue.int pop()
Removes the element from the front of the queue and returns it.int peek()
Returns the element at the front of the queue.boolean empty()
Returns true if the queue isempty
, `false otherwise.
Notes:
- You must use only standard operations of a stack, which means only push to
top
,peek/pop
fromtop
,size
, and isempty
operations are valid. - Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Example 1:
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
Constraints:
1 <= x <= 9
- At most
100
calls will be made topush
,pop
,peek
, andempty
. - All the calls to
pop
andpeek
are valid.
Code
Python Code
class Queue(object):
def __init__(self):
"""
initialize your data structure here.
"""
self.inStack, self.outStack = [], []
def push(self, x):
"""
:type x: int
:rtype: nothing
"""
self.inStack.append(x)
def pop(self):
"""
:rtype: nothing
"""
self.move()
self.outStack.pop()
def peek(self):
"""
:rtype: int
"""
self.move()
return self.outStack[-1]
def empty(self):
"""
:rtype: bool
"""
return (not self.inStack) and (not self.outStack)
def move(self):
"""
:rtype nothing
"""
if not self.outStack:
while self.inStack:
self.outStack.append(self.inStack.pop())